Search results
Results from the WOW.Com Content Network
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).
A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n , then the probability that it moves to state x at time n + 1 depends only on the ...
Notice that the general state space continuous-time Markov chain is general to such a degree that it has no designated term. While the time parameter is usually discrete, the state space of a Markov chain does not have any generally agreed-on restrictions: the term may refer to a process on an arbitrary state space. [15]
Intuitively, a stochastic matrix represents a Markov chain; the application of the stochastic matrix to a probability distribution redistributes the probability mass of the original distribution while preserving its total mass. If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain.
The sequence in which each of the phases occur may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of an absorbing Markov chain with one absorbing state. Each of the states of the Markov chain represents one of the phases.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
Consider a continuous-time Markov process with m + 1 states, where m ≥ 1, such that the states 1,...,m are transient states and state 0 is an absorbing state. Further, let the process have an initial probability of starting in any of the m + 1 phases given by the probability vector (α 0,α) where α 0 is a scalar and α is a 1 × m vector.
A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.