enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    NVWMI – NVIDIA Enterprise Management Toolkit; GameWorks PhysX – is a multi-platform game physics engine; CUDA 9.0–9.2 comes with these other components: CUTLASS 1.0 – custom linear algebra algorithms, NVIDIA Video Decoder was deprecated in CUDA 9.2; it is now available in NVIDIA Video Codec SDK; CUDA 10 comes with these other components:

  3. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive Toolkit (CNTK) Microsoft Research: 2016 MIT license [28] Yes Windows, Linux [29] (macOS via ...

  4. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    Version 1.0.0 was released on February 11, 2017. [17] While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units ). [ 18 ]

  5. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  6. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]

  7. Horovod (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Horovod_(machine_learning)

    Horovod is a free and open-source software framework for distributed deep learning training using TensorFlow, Keras, PyTorch, and Apache MXNet. Horovod is hosted under the Linux Foundation AI (LF AI). [3] Horovod has the goal of improving the speed, scale, and resource allocation when training a machine learning model. [4]

  8. Nvidia CUDA Compiler - Wikipedia

    en.wikipedia.org/wiki/Nvidia_CUDA_Compiler

    CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.

  9. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is used by the Facebook AI Research Group, [8] IBM, [9] Yandex [10] and the Idiap Research Institute. [11] Torch has been extended for use on Android [12] [better source needed] and iOS. [13] [better source needed] It has been used to build hardware implementations for data flows like those found in neural networks. [14]