Search results
Results from the WOW.Com Content Network
Planar chirality, also known as 2D chirality, is the special case of chirality for two dimensions. Most fundamentally, planar chirality is a mathematical term, finding use in chemistry , physics and related physical sciences, for example, in astronomy , optics and metamaterials .
2D-chiral patterns, such as flat spirals, cannot be superposed with their mirror image by translation or rotation in two-dimensional space (a plane). 2D chirality is associated with directionally asymmetric transmission (reflection and absorption) of circularly polarized waves. 2D-chiral materials, which are also anisotropic and lossy exhibit ...
2D chirality is associated with directionally asymmetric transmission (reflection and absorption) of circularly polarized electromagnetic waves. 2D-chiral materials, which are also anisotropic and lossy exhibit different total transmission (reflection and absorption) levels for the same circularly polarized wave incident on their front and back.
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Chirality is a symmetry property, not a property of any part of the periodic table. Thus many inorganic materials, molecules, and ions are chiral. Quartz is an example from the mineral kingdom. Such noncentric materials are of interest for applications in nonlinear optics.
The chiral symmetry transformation can be divided into a component that treats the left-handed and the right-handed parts equally, known as vector symmetry, and a component that actually treats them differently, known as axial symmetry. [2] (cf. Current algebra.) A scalar field model encoding chiral symmetry and its breaking is the chiral model.
3D-chiral metamaterials are constructed from chiral materials or resonators in which the effective chirality parameter is non-zero. Wave propagation properties in such chiral metamaterials demonstrate that negative refraction can be realized in metamaterials with a strong chirality and positive ε r {\displaystyle \varepsilon _{r}} and μ r ...
In a two-dimensional conformal field theory, properties are called chiral if they follow from the action of one of the two Virasoro algebras. If the space of states can be decomposed into factorized representations of the product of the two Virasoro algebras, then all consequences of conformal symmetry are chiral.