enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  4. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The NumPy numerical library interprets a*b or a.multiply(b) as the Hadamard product, and uses a@b or a.matmul(b) for the matrix product. With the SymPy symbolic library, multiplication of array objects as either a*b or a@b will produce the matrix product. The Hadamard product can be obtained with the method call a.multiply_elementwise(b). [22]

  5. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    For vectors with complex entries, using the given definition of the dot product would lead to quite different properties. For instance, the dot product of a vector with itself could be zero without the vector being the zero vector (e.g. this would happen with the vector a = [ 1 i ] {\displaystyle \mathbf {a} =[1\ i]} ).

  6. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  7. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  8. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]

  9. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product contrasts with: The dot product (a special case of "inner product"), which takes a pair of coordinate vectors as input and produces a scalar; The Kronecker product, which takes a pair of matrices as input and produces a block matrix; Standard matrix multiplication