enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Java syntax - Wikipedia

    en.wikipedia.org/wiki/Java_syntax

    The Java syntax has been gradually extended in the course of numerous major JDK releases, and now supports abilities such as generic programming and anonymous functions (function literals, called lambda expressions in Java). Since 2017, a new JDK version is released twice a year, with each release improving the language incrementally.

  3. Closure (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Closure_(computer_programming)

    As of Java 8, Java supports functions as first class objects. Lambda expressions of this form are considered of type Function<T,U> with T being the domain and U the image type. The expression can be called with its .apply(T t) method, but not with a standard method call.

  4. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In typed lambda calculus, functions can be applied only if they are capable of accepting the given input's "type" of data. Typed lambda calculi are strictly weaker than the untyped lambda calculus, which is the primary subject of this article, in the sense that typed lambda calculi can express less than the untyped calculus can. On the other ...

  5. Function object - Wikipedia

    en.wikipedia.org/wiki/Function_object

    Java has no first-class functions, so function objects are usually expressed by an interface with a single method (most commonly the Callable interface), typically with the implementation being an anonymous inner class, or, starting in Java 8, a lambda. For an example from Java's standard library, java.util.Collections.sort() takes a List and a ...

  6. System F - Wikipedia

    en.wikipedia.org/wiki/System_F

    System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML

  7. Functional programming - Wikipedia

    en.wikipedia.org/wiki/Functional_programming

    The lambda calculus, developed in the 1930s by Alonzo Church, is a formal system of computation built from function application. In 1937 Alan Turing proved that the lambda calculus and Turing machines are equivalent models of computation, [37] showing that the lambda calculus is Turing complete. Lambda calculus forms the basis of all functional ...

  8. Java (programming language) - Wikipedia

    en.wikipedia.org/wiki/Java_(programming_language)

    Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (), [16] meaning that compiled Java code can run on all platforms that support Java without the need to recompile. [17]

  9. Lazy evaluation - Wikipedia

    en.wikipedia.org/wiki/Lazy_evaluation

    Java's lambda expressions are just syntactic sugar. Anything that can be written with a lambda expression can be rewritten as a call to construct an instance of an anonymous inner class implementing the interface, [ a ] and any use of an anonymous inner class can be rewritten using a named inner class, and any named inner class can be moved to ...