Search results
Results from the WOW.Com Content Network
In contrast, an equation with a non-zero RHS is called inhomogeneous or non-homogeneous, as exemplified by Lf = g, with g a fixed function, which equation is to be solved for f. Then any solution of the inhomogeneous equation may have a solution of the homogeneous equation added to it, and still remain a solution.
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
Homogeneity (physics), translational invariance or compatibility of units in equations Homogeneity (semantics) , when a predicate must hold of all or none of some plurality Homogenization (biology) , a process that involves breaking apart cells — releasing organelles and cytoplasm
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.
These results were later generalized to spatially homogeneous random media modeled by differential equations with random coefficients which statistical properties are the same at every point in space. [5] [6] In practice, many applications require a more general way of modeling that is neither periodic nor statistically homogeneous. For this ...
Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1.