Search results
Results from the WOW.Com Content Network
Reaction of toluene to produce benzene and xylene. Transalkylation, as used by the petrochemical industry, is often used to convert toluene into benzene and xylenes. This is achieved through a disproportionation reaction of toluene in which one toluene molecule transfers its methyl group to another one. The reaction is not selective, and the ...
For example, the absorption spectrum for ethane shows a σ → σ* transition at 135 nm and that of water a n → σ* transition at 167 nm with an extinction coefficient of 7,000. Benzene has three aromatic π → π* transitions; two E-bands at 180 and 200 nm and one B-band at 255 nm with extinction coefficients respectively 60,000, 8,000 and 215.
1,1-Diphenylethylene is technical prepared by alkylating benzene by styrene in presence of a zeolite beta and subsequent dehydrogenation. [6] styrene + benzene → 1,1-diphenylethane → 1,1-diphenylethylene + H 2
Ethyl group (highlighted blue) as part of a molecule, as the ethyl radical, and in the compounds ethanol, bromoethane, ethyl acetate, and ethyl methyl ether.. In organic chemistry, an ethyl group (abbr. Et) is an alkyl substituent with the formula −CH 2 CH 3, derived from ethane (C 2 H 6).
The overhead offgas product from the stabilizer contains the byproduct methane, ethane, propane and butane gases produced by the hydrocracking reactions as explained in the above discussion of the reaction chemistry of a catalytic reformer, and it may also contain some small amount of hydrogen.
The reaction product is a derivative of benzene. Scheme 1. Bergman cyclization. The reaction proceeds by a thermal reaction or pyrolysis (above 200 °C) forming a short-lived and very reactive para-benzyne biradical species. It will react with any hydrogen donor such as 1,4-cyclohexadiene which converts to benzene.
The process, which is catalyzed by platinum supported by aluminium oxide, is exemplified in the conversion methylcyclohexane (a naphthene) into toluene (an aromatic). [2] Dehydrocyclization converts paraffins (acyclic hydrocarbons) into aromatics. [3] A related aromatization process includes dehydroisomerization of methylcyclopentane to benzene:
As an example, electrolysis of acetic acid yields ethane and carbon dioxide: CH 3 COOH → CH 3 COO − → CH 3 COO· → CH 3 · + CO 2 2CH 3 · → CH 3 CH 3. Another example is the synthesis of 2,7-dimethyl-2,7-dinitrooctane from 4-methyl-4-nitrovaleric acid: [3] The Kolbe reaction has also been occasionally used in cross-coupling reactions.