Search results
Results from the WOW.Com Content Network
The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) ...
Fresnel diffraction of circular aperture, plotted with Lommel functions. This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave.
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.
Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.
Propagation of a ray through a layer. The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films.
In 3D computer graphics, Schlick’s approximation, named after Christophe Schlick, is a formula for approximating the contribution of the Fresnel factor in the specular reflection of light from a non-conducting interface (surface) between two media.
Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) [1] is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that ...
Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, [4] which is the ratio of the reflected to incident electric field; [5] as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.