enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.

  3. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  4. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...

  5. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  6. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]

  7. Star schema - Wikipedia

    en.wikipedia.org/wiki/Star_schema

    Examples of fact data include sales price, sale quantity, and time, distance, speed and weight measurements. Related dimension attribute examples include product models, product colors, product sizes, geographic locations, and salesperson names. A star schema that has many dimensions is sometimes called a centipede schema. [4]

  8. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Orange, an open-source data mining and machine learning software suite. Python, an open-source programming language widely used in data mining and machine learning. R, an open-source programming language for statistical computing and graphics. Together with Python one of the most popular languages for data science.

  9. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    For example, the trajectory of a simple predator-prey system governed by the Lotka–Volterra equations [1] forms a closed circle in state space. TDA provides tools to detect and quantify such recurrent motion. [2] Many algorithms for data analysis, including those used in TDA, require setting various parameters.