Search results
Results from the WOW.Com Content Network
The Human Genome Project, a multinational effort to sequence the human genome, generated vast quantities of data about the genetic make-up of humans and other organisms. But, in some respects, even more remarkable than the impressive quantity of data generated by the Human Genome Project is the speed at which that data has been released to the ...
The human genome has many different regulatory sequences which are crucial to controlling gene expression. Conservative estimates indicate that these sequences make up 8% of the genome, [27] however extrapolations from the ENCODE project give that 20 [28] or more [29] of the genome is gene regulatory sequence.
Cis-regulatory elements (CREs) or cis-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes.CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology.
Cis-regulatory DNA sequences that are located in DNA regions distant from the promoters of genes can have very large effects on gene expression, with some genes undergoing up to 100-fold increased expression due to such a cis-regulatory sequence. [3] These cis-regulatory sequences include enhancers, silencers, insulators and tethering elements. [4]
[2] [3] The exact number is not known because there are disputes over the number of functional coding exons and over the total size of the human genome. This means that 98–99% of the human genome consists of non-coding DNA and this includes many functional elements such as non-coding genes and regulatory sequences. Genome size in eukaryotes ...
Schematic karyogram of a human, showing an overview of the human genome on G banding, which is a method that includes Giemsa staining, wherein the lighter staining regions are generally more transcriptionally active, whereas darker regions are more inactive.
When conserved regulatory transposable elements are active in a genome, they can introduce new promoter regions, disrupt existing regulatory sites, or, if inserted into transcribed regions, alter splicing patterns. A particular transposed element will be positively selected for if the altered expression it produces confers an adaptive advantage.
Regulation of gene expression by a hormone receptor Diagram showing at which stages in the DNA-mRNA-protein pathway expression can be controlled. Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA).