enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.

  4. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail

  5. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    How overshoot may be controlled by appropriate parameter choices is discussed next. Using the equations above, the amount of overshoot can be found by differentiating the step response and finding its maximum value. The result for maximum step response S max is: [3]

  6. Rise time - Wikipedia

    en.wikipedia.org/wiki/Rise_time

    Consider a system composed by n cascaded non interacting blocks, each having a rise time t r i, i = 1,…,n, and no overshoot in their step response: suppose also that the input signal of the first block has a rise time whose value is t r S. [22] Afterwards, its output signal has a rise time t r 0 equal to

  7. Local zeta function - Wikipedia

    en.wikipedia.org/wiki/Local_zeta_function

    In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = ⁡ (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.

  8. Complex network zeta function - Wikipedia

    en.wikipedia.org/wiki/Complex_network_zeta_function

    This definition of dimension could be put on a strong mathematical foundation, similar to the definition of Hausdorff dimension for continuous systems. The mathematically robust definition uses the concept of a zeta function for a graph. The complex network zeta function and the graph surface function were introduced to characterize large graphs.

  9. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The equation relates values of the Riemann zeta function at the points s and 1 − s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that ζ ( s ) has a simple zero at each even negative integer s = −2 n , known as the trivial zeros of ζ ( s ) .