Search results
Results from the WOW.Com Content Network
A closed system may exchange heat, experience forces, and exert forces, but does not exchange matter. An open system can interact with its surroundings by exchanging both matter and energy. The physical condition of a thermodynamic system at a given time is described by its state , which can be specified by the values of a set of thermodynamic ...
Open systems have input and output flows, representing exchanges of matter, energy or information with its surroundings. An open system is a system that has external interactions. Such interactions can take the form of information, energy, or material transfers into or out of the system boundary, depending on the discipline which defines the ...
An isolated system has a fixed total energy and mass. A closed system, on the other hand, is a system which is connected to another, and cannot exchange matter (i.e. particles), but can transfer other forms of energy (e.g. heat), to or from the other system.
When it is completely settled, so that macroscopic change is no longer detectable, it is in its own thermal equilibrium. It is not implied that it is necessarily in other kinds of internal equilibrium. For example, it is possible that a body might reach internal thermal equilibrium but not be in internal chemical equilibrium; glass is an ...
Cause must precede effect, but only within the constraints as defined explicitly within General Relativity (or Special Relativity, depending on the local spacetime conditions). Good examples of this are the Ladder Paradox, time dilation and length contraction exhibited by objects approaching the velocity of light or within proximity of a super ...
Matter and internal energy cannot permeate or penetrate such a wall. For an open system, there is a wall that allows penetration by matter. In general, matter in diffusive motion carries with it some internal energy, and some microscopic potential energy changes accompany the motion. An open system is not adiabatically enclosed.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).