Search results
Results from the WOW.Com Content Network
Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units ) or standard gravities per second ( g 0 /s).
An important characteristics for the field of vibration fatigue is the amplitude probability density function, that describes the statistical distribution of peak amplitudes. Ideally, the probability of cycle amplitudes, describing the load severity, could then be deduced directly.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
There are several mechanisms by which minority carriers can recombine, each of which subtract from the carrier lifetime. The main mechanisms that play a role in modern devices are band-to-band recombination and stimulated emission, which are forms of radiative recombination, and Shockley-Read-Hall (SRH), Auger, Langevin, and surface recombination, which are forms of non-radiative recombination.
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
If the object is disk-like, weights may be attached near the rim to reduce the sensed vibration. This is called one-plane dynamic balancing. If the object is cylinder or rod-like, it may be preferable to execute two-plane balancing, which holds one end's spin axis steady, while the other end's vibration is reduced.
In general, the amplitude gets a factor of the propagator for every internal line, that is, every line that does not represent an incoming or outgoing particle in the initial or final state. It will also get a factor proportional to, and similar in form to, an interaction term in the theory's Lagrangian for every internal vertex where lines meet.
In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering , which in turn depends on the nature of the incident radiation, typically X-ray , electron or neutron .