Search results
Results from the WOW.Com Content Network
A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.
PER Aligned: a fixed number of bits if the integer type has a finite range and the size of the range is less than 65536; a variable number of octets otherwise; OER: 1, 2, or 4 octets (either signed or unsigned) if the integer type has a finite range that fits in that number of octets; a variable number of octets otherwise
Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Integers, floating point numbers, strings, etc. are all considered "scalars". ^e PHP has two arbitrary-precision libraries. The BCMath library just uses strings as datatype.
The 2008 revision extended the previous standard where it was necessary, added decimal arithmetic and formats, tightened up certain areas of the original standard which were left undefined, and merged in IEEE 854 (the radix-independent floating-point standard). In a few cases, where stricter definitions of binary floating-point arithmetic might ...
The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.
The integer is: 16777217 The float is: 16777216.000000 Their equality: 1 Note that 1 represents equality in the last line above. This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways: