Search results
Results from the WOW.Com Content Network
Because PQ has length y 1, OQ length x 1, and OP has length 1 as a radius on the unit circle, sin(t) = y 1 and cos(t) = x 1. Having established these equivalences, take another radius OR from the origin to a point R(− x 1 , y 1 ) on the circle such that the same angle t is formed with the negative arm of the x -axis.
Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.
This gives the expected results of 4 π steradians for the 3D sphere bounded by a surface of area 4πr 2 and 2 π radians for the 2D circle bounded by a circumference of length 2πr. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [−r, r] and this is bounded by two limiting ...
When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 π (≈ 6.28) rad.
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
English: Some common angles (multiples of 30 and 45 degrees) and the corresponding sine and cosine values shown on the Unit circle.The angles (θ) are given in degrees and radians, together with the corresponding intersection point on the unit circle, (cos θ, sin θ).
Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.
English: Some common angles (multiples of 30 and 45 degrees) and the corresponding sine and cosine values shown on the Unit circle. The angles (θ) are given in degrees and radians, together with the corresponding intersection point on the unit circle, (cos θ, sin θ).