Search results
Results from the WOW.Com Content Network
Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close ...
Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.
Simply, if Mars is assumed to be a static perfectly spherical body of radius R M, provided that there is only one satellite revolving around Mars in a circular orbit and such gravitation interaction is the only force acting in the system, the equation would be
Phobos orbits so fast (with a period of just under one third of a sol) that it rises in the west and sets in the east, and does so twice per sol; Deimos on the other hand rises in the east and sets in the west, but orbits only a few hours slower than a Martian sol, so it spends about two and a half sols above the horizon at a time.
A satellite in areosynchronous orbit does not necessarily maintain a fixed position in the sky as seen by an observer on the surface of Mars; however, such a satellite will return to the same apparent position every Martian day. The orbital altitude required to maintain an areosynchronous orbit is approximately 17,000 kilometres (11,000 mi).
For premium support please call: 800-290-4726 more ways to reach us
The Mars One Project is a privately-funded mission that will take 100 people to live on the Red Planet starting in 2026. How one man feels about his wife moving to Mars Skip to main content
It takes 250 days (0.68 years) in the transit to Mars, and in the case of a free-return style abort without the use of propulsion at Mars, 1.5 years to get back to Earth, at a total delta-v requirement of 3.34 km/s. Zubrin advocates a slightly faster transfer, that takes only 180 days to Mars, but 2 years back to Earth in case of an abort.