Search results
Results from the WOW.Com Content Network
The expansion history depends on the density of the universe. Ω on this graph corresponds to the ratio of the matter density to the critical density, for a matter-dominated universe. The "acceleration" curve shows the trajectory of the scale factor for a universe with dark energy.
[7] [obsolete source] In this case, the universe did not collapse into a black hole, because currently-known calculations and density limits for gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not necessarily apply in the same way to rapidly expanding space such as the Big
The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.
This interdisciplinary field encompasses research on the origin of planetary systems, origins of organic compounds in space, rock-water-carbon interactions, abiogenesis on Earth, planetary habitability, research on biosignatures for life detection, and studies on the potential for life to adapt to challenges on Earth and in outer space. [83 ...
In October 2020, astronomers reported a significant unexpected increase in density in the space beyond the Solar System as detected by the Voyager 1 and Voyager 2 space probes. According to the researchers, this implies that "the density gradient is a large-scale feature of the VLISM (very local interstellar medium) in the general direction of ...
The branch of astronomy that employs principles of physics and chemistry to determine the nature of astronomical objects and phenomena, examining properties such as luminosity, density, temperature, and chemical composition (rather than the positions or motions of objects in space, which is more specifically the emphasis of celestial mechanics).
The cosmological constant was originally introduced in Einstein's 1917 paper entitled “The cosmological considerations in the General Theory of Reality”. [2] Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe: gravity would cause a universe that was ...
The term outward space existed in a poem from 1842 by the English poet Lady Emmeline Stuart-Wortley called "The Maiden of Moscow", [13] but in astronomy the term outer space found its application for the first time in 1845 by Alexander von Humboldt. [14] The term was eventually popularized through the writings of H. G. Wells after 1901. [15]