Search results
Results from the WOW.Com Content Network
An example of cluster sampling is area sampling or geographical cluster sampling.Each cluster is a geographical area in an area sampling frame.Because a geographically dispersed population can be expensive to survey, greater economy than simple random sampling can be achieved by grouping several respondents within a local area into a cluster.
In statistics, multistage sampling is the taking of samples in stages using smaller and smaller sampling units at each stage. [1] Multistage sampling can be a complex form of cluster sampling because it is a type of sampling which involves dividing the population into groups (or clusters). Then, one or more clusters are chosen at random and ...
For example, in cluster sampling we can use a two stage sampling in which we sample each cluster (which may be of different sizes) with equal probability, and then sample from each cluster at the second stage using SRS with a fixed proportion (e.g. sample half of the cluster, the whole cluster, etc.).
For this reason, cluster sampling requires a larger sample than SRS to achieve the same level of accuracy – but cost savings from clustering might still make this a cheaper option. Cluster sampling is commonly implemented as multistage sampling. This is a complex form of cluster sampling in which two or more levels of units are embedded one ...
Because a cluster-based frame contains less information about the population, it may place constraints on the sample design, possibly requiring the use of less efficient sampling methods and/or making it harder to interpret the resulting data. Statistical theory tells us about the uncertainties in extrapolating from a sample to the frame.
6. A discussion of the precision of the findings, including estimates of sampling error, and a description of any weighting or estimating procedures used. 7. Which results are based on parts of the sample, rather than on the total sample, and the size of such parts. 8. Method, location, and dates of data collection.
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
Point sampling can be based on a two-stage scheme, sampling clusters in the first stage and sampling points in the second stage. Another option is a two-phase scheme of unclustered points: a large first-phase sample is selected. A stratification is conducted only for the first-phase sample and a stratified sample is chosen in the second phase.