Search results
Results from the WOW.Com Content Network
In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]).
Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight. Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping ...
Tangential – intersecting a curve at a point and parallel to the curve at that point. Collinear – in the same line; Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection).
In the complex plane (formed by viewing the real and imaginary parts of a complex number as the x and y Cartesian coordinates of the plane), concyclicity has a particularly simple formulation: four points in the complex plane are either concyclic or collinear if and only if their cross-ratio is a real number. [17]
Being on a circle means the four points are the image of four real points under a Möbius transformation, and hence the cross ratio is a real number. The Poincaré half-plane model and Poincaré disk model are two models of hyperbolic geometry in the complex projective line.
In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction: Given three collinear points A, B, C, let L be a point not lying on their join and let any line through C meet LA, LB at M, N respectively.
A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity.
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the general case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings.