Search results
Results from the WOW.Com Content Network
These possibilities have been used to account for the fact that, for certain substrates like α-tetralone, the group that migrates can sometimes change, depending on the conditions used, to deliver either of the two possible amides. [8] Two proposed reaction mechanisms for the amide formation from a ketone via Schmidt reaction
The aldol reaction (aldol addition) is a reaction in organic chemistry that combines two carbonyl compounds (e.g. aldehydes or ketones) to form a new β-hydroxy carbonyl compound. Its simplest form might involve the nucleophilic addition of an enolized ketone to another:
For these latter reactions, two equivalents of the incoming group add to form an alcohol rather than a ketone or aldehyde. This occurs even if the equivalents of nucleophile are closely controlled. Overaddition of nucleophiles. The Weinreb–Nahm amide has since been adopted into regular use by organic chemists as a dependable method for the ...
Intramolecular aldol condensation is between two aldehyde groups or ketone groups in the same molecule. Five- or six-membered α, β-unsaturated ketone or aldehydes are formed as products. This reaction is an important approach to the formation of carbon-carbon bonds in organic molecules containing ring systems.
An aldol condensation is a condensation reaction in organic chemistry in which two carbonyl moieties (of aldehydes or ketones) react to form a β-hydroxyaldehyde or β-hydroxyketone (an aldol reaction), and this is then followed by dehydration to give a conjugated enone. The overall reaction equation is as follows (where the Rs can be H)
[4] [5] The reaction has since been extended to the synthesis of β-keto esters from the condensation between aldehydes and diazo esters. [6] The general reaction scheme is as follows: General Scheme for Buchner Reaction. The reaction yields two possible carbonyl compounds (I and II) along with an epoxide (III). The ratio of the products is ...
In the aldol reaction, the metal enolates of ketones, esters, amides, and carboxylic acids add to aldehydes to form β-hydroxycarbonyl compounds . Acid or base-catalyzed dehydration then leads to α,β-unsaturated carbonyl compounds. The combination of these two steps is known as the aldol condensation.
The Norrish type I reaction is the photochemical cleavage or homolysis of aldehydes and ketones into two free radical intermediates (α-scission). The carbonyl group accepts a photon and is excited to a photochemical singlet state. Through intersystem crossing the triplet state can be obtained.