enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]

  4. De analysi per aequationes numero terminorum infinitas

    en.wikipedia.org/wiki/De_analysi_per_aequationes...

    Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .

  7. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +. The first n {\displaystyle n} terms of the series sum to approximately ln ⁡ n + γ {\displaystyle \ln n+\gamma } , where ln {\displaystyle \ln } is the natural logarithm and γ ≈ 0.577 {\displaystyle \gamma \approx 0.577 ...

  8. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    Notably, these series provide examples of infinite sums that converge or diverge arbitrarily slowly. For instance, in the case of k = 2 {\displaystyle k=2} and α = 1 {\displaystyle \alpha =1} , the partial sum exceeds 10 only after 10 10 100 {\displaystyle 10^{10^{100}}} (a googolplex ) terms; yet the series diverges nevertheless.

  9. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent