Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]
Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.
Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]
In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +. The first n {\displaystyle n} terms of the series sum to approximately ln n + γ {\displaystyle \ln n+\gamma } , where ln {\displaystyle \ln } is the natural logarithm and γ ≈ 0.577 {\displaystyle \gamma \approx 0.577 ...
Notably, these series provide examples of infinite sums that converge or diverge arbitrarily slowly. For instance, in the case of k = 2 {\displaystyle k=2} and α = 1 {\displaystyle \alpha =1} , the partial sum exceeds 10 only after 10 10 100 {\displaystyle 10^{10^{100}}} (a googolplex ) terms; yet the series diverges nevertheless.
In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent