Search results
Results from the WOW.Com Content Network
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
If there is a strong thermally driven atmospheric escape of light atoms, heavier atoms can achieve the escape velocity through viscous drag by those escaping lighter atoms. [2] This is another way of thermal escape, called hydrodynamic escape. The heaviest species of atom that can be removed in this manner is called the cross-over mass. [3]
The escape of any atmospheric gas can be diffusion-limited, but only diffusion-limited escape of hydrogen has been observed in our solar system, on Earth, Mars, Venus and Titan. [1] Diffusion-limited hydrogen escape was likely important for the rise of oxygen in Earth's atmosphere ( the Great Oxidation Event ) and can be used to estimate the ...
A University of Colorado, Boulder team has discovered that Mars has an atmospheric "escape route" which may have helped hydrogen drift into space at much faster rates.
In a so-called NMR spin echo experiment this technique uses the nuclear spin precession phase, allowing to distinguish chemically and physically completely identical species e.g. in the liquid phase, as for example water molecules within liquid water. The self-diffusion coefficient of water has been experimentally determined with high accuracy ...
A substance that has a larger surface area will evaporate faster, as there are more surface molecules per unit of volume that are potentially able to escape. Temperature of the substance the higher the temperature of the substance the greater the kinetic energy of the molecules at its surface and therefore the faster the rate of their evaporation.
Atmospheric nitrogen has a partial pressure of approximately 0.78 bar at sea level. Air in the alveoli of the lungs is diluted by saturated water vapour (H 2 O) and carbon dioxide (CO 2), a metabolic product given off by the blood, and contains less oxygen (O 2) than atmospheric air as some of it is taken up by the blood for metabolic use. The ...
Protons tunnel across a series of hydrogen bonds between hydronium ions and water molecules.. The Grotthuss mechanism (also known as proton jumping) is a model for the process by which an 'excess' proton or proton defect diffuses through the hydrogen bond network of water molecules or other hydrogen-bonded liquids through the formation and concomitant cleavage of covalent bonds involving ...