enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail for noncommuting x and y. Some alternative definitions lead to the same function. For instance, e x can be defined as (+).

  3. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Walter Rudin called it "the most important function in mathematics". [1] It is therefore useful to have multiple ways to define (or characterize) it. Each of the characterizations below may be more or less useful depending on context.

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    Toggle Power series subsection. 2.1 Low-order polylogarithms. 2.2 Exponential function. 2.3 Trigonometric, inverse trigonometric, hyperbolic, ...

  5. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In this animation N takes various increasing values from 1 to 100. The computation of (1 + ⁠ iπ / N ⁠) N is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 + ⁠ iπ / N ⁠) N. It can be seen that as N gets larger (1 + ⁠ iπ / N ⁠) N approaches a ...

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:

  9. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .