Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali
At half-neutralization the ratio [A −] / [HA] = 1; since log(1) = 0, the pH at half-neutralization is numerically equal to pK a. Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1.
V eq is the volume of titrant (ml) consumed by the crude oil sample and 1 ml of spiking solution at the equivalent point, b eq is the volume of titrant (ml) consumed by 1 ml of spiking solution at the equivalent point, 56.1 g/mol is the molecular weight of KOH, W oil is the mass of the sample in grams. The normality (N) of titrant is calculated as:
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Add distilled water to a total volume of 1 liter. The resultant 1× PBS will have a final concentration of 157 mM Na +, 140mM Cl −, 4.45mM K +, 10.1 mM HPO 4 2−, 1.76 mM H 2 PO 4 − and a pH of 7.96. Add 2.84 mM of HCl to shift the buffer to 7.3 mM HPO 4 2− and 4.6 mM H 2 PO 4 − for a final pH of 7.4 and a Cl − concentration of 142 ...
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]
It has pK a value of 6.15 at 20 °C. The pH (and pK a at ionic strength I≠0) of the buffer solution changes with concentration and temperature, and this effect may be predicted using online calculators. [2] MES is highly soluble in water. The melting point is approx. 300 °C. MES was developed as one of Good's buffers in the 1960s.