Search results
Results from the WOW.Com Content Network
To calculate a Pythagorean triple, take any term of this sequence and convert it to an improper fraction (for mixed number , the corresponding improper fraction is ). Then its numerator and denominator are the sides, b and a, of a right triangle, and the hypotenuse is b + 1. For example:
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
The problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean triple of integers a, b, c, satisfying + = are all the same color. For example, in the Pythagorean triple 3, 4, and 5 ( 3 2 + 4 2 = 5 2 {\displaystyle 3^{2}+4^{2}=5^{2}} ), if 3 and 4 are colored red, then 5 must be colored blue.
To find the primitive Pythagorean triple associated with any such value t, compute (1 − t 2, 2t, 1 + t 2) and multiply all three values by the least common multiple of their denominators. (Alternatively, write t = n / m as a fraction in lowest terms and use the formulas from the previous section.)
In general, a linear fractional transformation is a homography of P(A), the projective line over a ring A.When A is a commutative ring, then a linear fractional transformation has the familiar form
[1] [2] Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, [a] which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.