Search results
Results from the WOW.Com Content Network
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. [3] [4] The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ).
As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy. Photon energy can be expressed using any energy unit.
Ultra-high-energy gamma rays are gamma rays with photon energies higher than 100 TeV (0.1 PeV). They have a frequency higher than 2.42 × 10 28 Hz and a wavelength shorter than 1.24 × 10 −20 m.
Extremely high frequency or commonly known as "EHF", is a large broadband that span a radius of about (30 GHz to 300 GHz) for the molecular spectra of radio frequencies. It lies between the super high frequency (3 GHz to 30 GHz) band and the far infrared band (300 GHz to 10 15), for which the lower part is the terahertz band.
The optical window is also referred to as the "visible window" because it overlaps the human visible response spectrum. The near infrared (NIR) window lies just out of the human vision, as well as the medium wavelength infrared (MWIR) window, and the long-wavelength or far-infrared (LWIR or FIR) window, although other animals may perceive them ...
where λ is the wavelength of an emitted photon, ν is its frequency, E is the photon energy, h is the Planck constant, and c is the speed of light in a vacuum. In a laboratory setting, the hydrogen line parameters have been more precisely measured as: λ = 21.106 114 054 160 (30) cm ν = 1 420 405 751.768(2) Hz. in a vacuum. [3]