Search results
Results from the WOW.Com Content Network
The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and ...
Terahertz waves lie at the far end of the infrared band, just before the start of the microwave band. Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency [1] (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the International Telecommunication Union-designated band of frequencies from 0.3 to 3 ...
Radio waves are defined by the ITU as: "electromagnetic waves of frequencies arbitrarily lower than 3000 GHz, propagated in space without artificial guide". [5] At the high frequency end the radio spectrum is bounded by the infrared band. The boundary between radio waves and infrared waves is defined at different frequencies in different ...
5.8 GHz: Electromagnetic – cordless telephone frequency introduced in 2003 10 10: 10 GHz: 3 GHz to 30 GHz: Electromagnetic – super high frequency: 60 GHz: Electromagnetic – 60 GHz Wi-Fi (WiGig) introduced in 2010 10 11: 100 GHz 160.2 GHz: Electromagnetic – peak of cosmic microwave background radiation: 845 GHz: Fastest transistor ...
Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of the wave. [40] In a medium (other than vacuum), velocity factor or refractive index are considered, depending on frequency and application ...
Radio waves were first predicted by the theory of electromagnetism that was proposed in 1867 by Scottish mathematical physicist James Clerk Maxwell. [5] His mathematical theory, now called Maxwell's equations, predicted that a coupled electric and magnetic field could travel through space as an "electromagnetic wave".
Millimeter-length electromagnetic waves were first investigated by Jagadish Chandra Bose, who generated waves of frequency up to 60 GHz during experiments in 1894–1896. [1] Compared to lower bands, radio waves in this band have high atmospheric attenuation: they are absorbed by the gases in the atmosphere. Absorption increases with frequency ...
It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz ( 3 × 10 19 Hz ) and wavelengths less than 10 picometers ( 1 × 10 −11 m ), gamma ray photons have the highest photon energy of any form of electromagnetic radiation.