Search results
Results from the WOW.Com Content Network
This is known as the AAA similarity theorem. [2] Note that the "AAA" is a mnemonic: each one of the three A's refers to an "angle". Due to this theorem, several authors simplify the definition of similar triangles to only require that the corresponding three angles are congruent. [3]
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [8] or as a special case of De Gua's theorem (for the particular case of acute triangles), [9] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
A similarity system of triangles is a specific configuration involving a set of triangles. [1] A set of triangles is considered a configuration when all of the triangles share a minimum of one incidence relation with one of the other triangles present in the set. [1]
Pages in category "Theorems about triangles" The following 29 pages are in this category, out of 29 total. This list may not reflect recent changes. A.
A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads.
Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle. The cosine similarity always belongs to the interval [,].