Search results
Results from the WOW.Com Content Network
If c = 0, the generator is often called a multiplicative congruential generator (MCG), or Lehmer RNG. If c ≠ 0, the method is called a mixed congruential generator. [1]: 4- When c ≠ 0, a mathematician would call the recurrence an affine transformation, not a linear one, but the misnomer is well-established in computer science. [2]: 1
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
We also note that the same shifted generating function technique applied to the second-order recurrence for the Fibonacci numbers is the prototypical example of using generating functions to solve recurrence relations in one variable already covered, or at least hinted at, in the subsection on rational functions given above.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .
Another prime generator is defined by the recurrence relation ... so such recurrence relations are more a matter of curiosity than of any practical use. ...
The generator computes an odd 128-bit value and returns its upper 64 bits. This generator passes BigCrush from TestU01, but fails the TMFn test from PractRand. That test has been designed to catch exactly the defect of this type of generator: since the modulus is a power of 2, the period of the lowest bit in the output is only 2 62, rather than ...
The recurrence relation above is similar to the recurrence relation used by a linear congruential generator, a poor-quality pseudorandom number generator: [4] = (+) For the low discrepancy additive recurrence above, a and m are chosen to be 1. Note, however, that this will not generate independent random numbers, so should not be used for ...