Search results
Results from the WOW.Com Content Network
The arrays are heterogeneous: a single array can have keys of different types. PHP's associative arrays can be used to represent trees, lists, stacks, queues, and other common data structures not built into PHP. An associative array can be declared using the following syntax:
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
For example, one could define a dictionary having a string "toast" mapped to the integer 42 or vice versa. The keys in a dictionary must be of an immutable Python type, such as an integer or a string, because under the hood they are implemented via a hash function. This makes for much faster lookup times, but requires keys not change.
It can convert a wide range of complex data structures, including dict, array, numpy ndarray, into JData representations and export the data as JSON or UBJSON files. The BJData Python module, pybj, [4] enabling reading/writing BJData/UBJSON files, is also available on PyPI, Debian/Ubuntu and GitHub.
Eval is understood to be the step of converting a quoted string into a callable function and its arguments, whereas apply is the actual call of the function with a given set of arguments. The distinction is particularly noticeable in functional languages , and languages based on lambda calculus , such as LISP and Scheme .
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]