Search results
Results from the WOW.Com Content Network
The sphere has the smallest surface area of all surfaces that enclose a given volume, and it encloses the largest volume among all closed surfaces with a given surface area. [11] The sphere therefore appears in nature: for example, bubbles and small water drops are roughly spherical because the surface tension locally minimizes surface area ...
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth ...
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The curved surface area of the spherical sector (on the surface of the sphere, excluding the cone surface) is =. It is also A = Ω r 2 {\displaystyle A=\Omega r^{2}} where Ω is the solid angle of the spherical sector in steradians , the SI unit of solid angle.
The formula for the volume of the -ball can be derived from this by integration. Similarly the surface area element of the -sphere of radius , which generalizes the area element of the -sphere, is given by
The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 (r) is the surface area of an (n − 1)-sphere of radius r, then: = (). Applying this to the above integral gives the expression
A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.