Search results
Results from the WOW.Com Content Network
The feature-based approach to template matching relies on the extraction of image features, such as shapes, textures, and colors, that match the target image or frame. This approach is usually achieved using neural networks and deep-learning classifiers such as VGG, AlexNet , and ResNet .
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.).
Point set registration is the process of aligning two point sets. Here, the blue fish is being registered to the red fish. In computer vision, pattern recognition, and robotics, point-set registration, also known as point-cloud registration or scan matching, is the process of finding a spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds.
For more complicated shapes in the plane (i.e., shapes that cannot be represented analytically in some 2D space), the Generalised Hough transform [13] is used, which allows a feature to vote for a particular position, orientation and/or scaling of the shape using a predefined look-up table.The Hough transform accumulates contributions from all ...
An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are ...
The algorithm is based on comparing and analyzing point correspondences between the reference image and the target image. If any part of the cluttered scene shares correspondences greater than the threshold, that part of the cluttered scene image is targeted and considered to include the reference object there.
The snakes model is popular in computer vision, and snakes are widely used in applications like object tracking, shape recognition, segmentation, edge detection and stereo matching. A snake is an energy minimizing, deformable spline influenced by constraint and image forces that pull it towards object contours and internal forces that resist ...
In computer vision, speeded up robust features (SURF) is a local feature detector and descriptor, with patented applications. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction.