enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.

  3. van der Waals radius - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_radius

    The van der Waals radius, r w, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals ...

  4. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  5. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    In contrast, the physical radius of the body is proportional to the cube root of its volume. Therefore, as the body accumulates matter at a given fixed density (in this example, 997 kg/m 3 , the density of water), its Schwarzschild radius will increase more quickly than its physical radius.

  6. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    where r is the radius and d is the diameter of the sphere. Archimedes first derived this formula by showing that the volume inside a sphere is twice the volume between the sphere and the circumscribed cylinder of that sphere (having the height and diameter equal to the diameter of the sphere). [6]

  7. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:

  8. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere. In this case the volume of the band is the volume of the whole sphere, which matches the formula given above.

  9. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}