Search results
Results from the WOW.Com Content Network
The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.
In equation above, positive post-test probability is calculated using the likelihood ratio positive, and the negative post-test probability is calculated using the likelihood ratio negative. Odds are converted to probabilities as follows: [18]
The negative predictive value is defined as: = + = where a "true negative" is the event that the test makes a negative prediction, and the subject has a negative result under the gold standard, and a "false negative" is the event that the test makes a negative prediction, and the subject has a positive result under the gold standard.
Complementarily, the false negative rate (FNR) is the proportion of positives which yield negative test outcomes with the test, i.e., the conditional probability of a negative test result given that the condition being looked for is present. In statistical hypothesis testing, this fraction is given the letter β.
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.
In statistics, the observed information, or observed Fisher information, is the negative of the second derivative (the Hessian matrix) of the "log-likelihood" (the logarithm of the likelihood function). It is a sample-based version of the Fisher information.
We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model.. Suppose we had a sample = (, …,) where each is the number of times that an object of type was observed.
Likelihood intervals, and more generally likelihood regions, are used for interval estimation within likelihood-based statistics ("likelihoodist" statistics): They are similar to confidence intervals in frequentist statistics and credible intervals in Bayesian statistics. Likelihood intervals are interpreted directly in terms of relative ...