enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.

  3. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Data augmentation in data analysis are techniques used to increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data. It acts as a regularizer and helps reduce overfitting when training a machine learning model. [ 8 ] (

  4. Timeline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_machine_learning

    Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s: Work on Machine learning shifts from a knowledge-driven approach to a data-driven approach.

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  6. Concept drift - Wikipedia

    en.wikipedia.org/wiki/Concept_drift

    In predictive analytics, data science, machine learning and related fields, concept drift or drift is an evolution of data that invalidates the data model.It happens when the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways.

  7. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. [ 1 ]

  8. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [ 1 ] [ 2 ] [ 3 ] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.

  9. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.