Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.
Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during
For more complicated maneuvers which may involve a combination of change in inclination and orbital radius, the delta-v is the vector difference between the velocity vectors of the initial orbit and the desired orbit at the transfer point. These types of combined maneuvers are commonplace, as it is more efficient to perform multiple orbital ...
Delta-v required for Hohmann (thick black curve) and bi-elliptic transfers (colored curves) between two circular orbits as a function of the ratio of their radii The figure shows the total Δ v {\displaystyle \Delta v} required to transfer from a circular orbit of radius r 1 {\displaystyle r_{1}} to another circular orbit of radius r 2 ...
In Microsoft Excel, these functions are defined using Visual Basic for Applications in the supplied Visual Basic editor, and such functions are automatically accessible on the worksheet. Also, programs can be written that pull information from the worksheet, perform some calculations, and report the results back to the worksheet.
Remember that this change in velocity, ∆V, is only the amount required to change the spacecraft from its original orbit to the phasing orbit.A second change in velocity equal to the magnitude but opposite in direction of the first must be done after the spacecraft travels one phase orbit period to return the spacecraft from the phasing orbit to the original orbit.
being known functions of the parameter y the time for the true anomaly to increase with the amount is also a known function of y. If t 2 − t 1 {\displaystyle t_{2}-t_{1}} is in the range that can be obtained with an elliptic Kepler orbit corresponding y value can then be found using an iterative algorithm.