Search results
Results from the WOW.Com Content Network
Vapor pressure [a] or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate.
The vapor pressure of water is the pressure exerted by molecules of water vapor in gaseous form (whether pure or in a mixture with other gases such as air). The saturation vapor pressure is the pressure at which water vapor is in thermodynamic equilibrium with its condensed state .
The equilibrium concentration of each component in the liquid phase is often different from its concentration (or vapor pressure) in the vapor phase, but there is a relationship. The VLE concentration data can be determined experimentally or approximated with the help of theories such as Raoult's law , Dalton's law , and Henry's law .
David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Vapor Pressure Uncertainties of several degrees should generally be assumed.
The definition of a w is where p is the partial water vapor pressure in equilibrium with the solution, and p* is the (partial) vapor pressure of pure water at the same temperature. An alternate definition can be a w ≡ l w x w {\displaystyle a_{w}\equiv l_{w}x_{w}} where l w is the activity coefficient of water and x w is the mole fraction of ...
The table below gives thermodynamic data of liquid CO 2 in equilibrium with its vapor at various temperatures. Heat content data, heat of vaporization, and entropy values are relative to the liquid state at 0 °C temperature and 3483 kPa pressure.
Isopropanol vapor pressure (logarithmic scale) vs temperature. ... Vapor-liquid equilibrium for isopropanol/methanol [4] P = 101.325 kPa BP temp. °C % by mole ...
Köhler theory combines the Kelvin effect, which describes the change in vapor pressure due to a curved surface, with Raoult's Law, which relates the vapor pressure to the solute concentration. [1] [2] [3] It was initially published in 1936 by Hilding Köhler, Professor of Meteorology in the Uppsala University.