enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    In some cases, it can require less total delta-v to raise the satellite into a higher orbit, change the orbit plane at the higher apogee, and then lower the satellite to its original altitude. [1] For the most efficient example mentioned above, targeting an inclination at apoapsis also changes the argument of periapsis.

  5. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    The applied change in velocity of each maneuver is referred to as delta-v (). The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers.

  6. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during

  7. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    These maneuvers require changes in the craft's velocity, and the classical rocket equation is used to calculate the propellant requirements for a given delta-v. A delta- v budget will add up all the propellant requirements, or determine the total delta-v available from a given amount of propellant, for the mission.

  8. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Specific impulse in turn has deep impacts on the achievable delta-v and associated orbits achievable, and (by the rocket equation) mass fraction required to achieve a given delta-v. Optimizing the tradeoffs between mass fraction and specific impulse is one of the fundamental engineering challenges in rocketry.

  9. Gravity loss - Wikipedia

    en.wikipedia.org/wiki/Gravity_loss

    The actual acceleration of the craft is a-g and it is using delta-v at a rate of a per unit time. Over a time t the change in speed of the spacecraft is (a-g)t, whereas the delta-v expended is at. The gravity loss is the difference between these figures, which is gt. As a proportion of delta-v, the gravity loss is g/a.