enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    The area formula can also be applied to self-overlapping polygons since the meaning of area is still clear even though self-overlapping polygons are not generally simple. [6] Furthermore, a self-overlapping polygon can have multiple "interpretations" but the Shoelace formula can be used to show that the polygon's area is the same regardless of ...

  3. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  4. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Using these formulas, the area of any polygon can be found by dividing the polygon into triangles. [4] For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus .

  5. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    In either case, the area formula is correct in absolute value. This is commonly called the shoelace formula or surveyor's formula. [6] The area A of a simple polygon can also be computed if the lengths of the sides, a 1, a 2, ..., a n and the exterior angles, θ 1, θ 2, ..., θ n are known, from:

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    In geometry a quadrilateral is a four-sided polygon, ... Irregular quadrilateral ... Another area formula in terms of the sides and angles, ...

  7. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    The second moment of area about the origin for any simple polygon on the XY-plane can be computed in general by summing contributions from each segment of the polygon after dividing the area into a set of triangles. This formula is related to the shoelace formula and can be considered a special case of Green's theorem. A polygon is assumed to ...

  8. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr 2, π being defined as the ratio of the circumference to the diameter (C/d).

  9. Simple polygon - Wikipedia

    en.wikipedia.org/wiki/Simple_polygon

    Simple formulae are known for computing the area of the interior of a polygon. These include the shoelace formula for arbitrary polygons, [21] and Pick's theorem for polygons with integer vertex coordinates. [12] [22]