enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  3. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    In a Euclidean space, the sum of angles of a triangle equals a straight angle (180 degrees, π radians, two right angles, or a half-turn). A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides. It was unknown for a long time whether other geometries exist, for which this sum is different. The influence of this ...

  4. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    There is at most one line that can be drawn parallel to another given one through an external point. (Playfair's axiom) The sum of the angles in every triangle is 180° (triangle postulate). There exists a triangle whose angles add up to 180°. The sum of the angles is the same for every triangle.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The sum of the measures of the interior angles of a triangle in Euclidean space is always 180 degrees. [32] This fact is equivalent to Euclid's parallel postulate. This allows the determination of the measure of the third angle of any triangle, given the measure of two angles. [33]

  6. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n-gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn, so the sum of the exterior angles must be 360°. This argument can be generalized to concave simple ...

  7. Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Bonnet_theorem

    The sum of interior angles of a geodesic triangle is equal to π plus the total curvature enclosed by the triangle: () = +. In the case of the plane (where the Gaussian curvature is 0 and geodesics are straight lines), we recover the familiar formula for the sum of angles in an ordinary triangle.

  8. Pentagon - Wikipedia

    en.wikipedia.org/wiki/Pentagon

    In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.

  9. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    The total sum of the interior angles of a simple decagon is 1440°. ... An alternative formula is = ... In the construction with given side length [6] ...