enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    For the simple shear case, it is just a gradient of velocity in a flowing material. The SI unit of measurement for shear rate is s −1, expressed as "reciprocal seconds" or "inverse seconds". [1] However, when modelling fluids in 3D, it is common to consider a scalar value for the shear rate by calculating the second invariant of the strain ...

  3. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  4. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    The velocity profile near the boundary of a flow (see Law of the wall) Transport of sediment in a channel; Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of ...

  5. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    The following equation illustrates the relation between shear rate and shear stress for a fluid with laminar flow only in the direction x: =, where: τ x y {\displaystyle \tau _{xy}} is the shear stress in the components x and y, i.e. the force component on the direction x per unit surface that is normal to the direction y (so it is parallel to ...

  6. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  7. Simple shear - Wikipedia

    en.wikipedia.org/wiki/Simple_shear

    This deformation is differentiated from a pure shear by virtue of the presence of a rigid rotation of the material. [2] [3] When rubber deforms under simple shear, its stress-strain behavior is approximately linear. [4] A rod under torsion is a practical example for a body under simple shear. [5]

  8. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The stress tensor is a linear function of the strain rate tensor or equivalently the velocity gradient. The fluid is isotropic. For a fluid at rest, ∇ ⋅ τ must be zero (so that hydrostatic pressure results).

  9. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    This strain rate tensor can be defined as the time derivative of the strain tensor, or as the symmetric part of the gradient (derivative with respect to position) of the velocity of the material. With a chosen coordinate system , the strain rate tensor can be represented by a symmetric 3×3 matrix of real numbers.