enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    In general, the basis vectors are neither unit vectors nor mutually orthogonal. However, they are required to be linearly independent. However, they are required to be linearly independent. Then a vector v can be expressed as [ 4 ] : 27 v = v k b k {\displaystyle \mathbf {v} =v^{k}\,\mathbf {b} _{k}} The components v k are the contravariant ...

  4. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  5. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In Euclidean 3-space, the wedge product has the same magnitude as the cross product (the area of the parallelogram formed by sides and ) but generalizes to arbitrary affine spaces and products between more than two vectors. Tensor product – for two vectors and , where and are vector spaces, their tensor product belongs to the tensor product ...

  8. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    The seven-dimensional cross product is one way of generalizing the cross product to other than three dimensions, and it is the only other bilinear product of two vectors that is vector-valued, orthogonal, and has the same magnitude as in the 3D case. [2]

  9. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix.