Search results
Results from the WOW.Com Content Network
Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is 0 / 3 + 1 / 3 + 1 / 3 = 2 / 3 .
The graph on the right shows the probability density function of r given that 7 heads were obtained in 10 tosses. (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1
The probability of getting two heads in two tosses is 1 / 4 (one in four) and the probability of getting three heads in three tosses is 1 / 8 (one in eight). In general, if A i is the event where toss i of a fair coin comes up heads, then:
Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player whose sequence appears first wins. Provided sequences of at least length three are used, the second player (B) has an edge over the starting player (A).
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).
The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work Calcul des probabilités (1889) [1] as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite.
For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss, (), is the sum of probability for and the probability for , () + (). Second, the probability of the sample space Ω {\displaystyle \Omega } must be equal to 1 (which accounts for the fact that, given an execution of the ...
In the case of flipping a coin, flipping a head and flipping a tail are also mutually exclusive events. Both outcomes cannot occur for a single trial (i.e., when a coin is flipped only once). The probability of flipping a head and the probability of flipping a tail can be added to yield a probability of 1: 1/2 + 1/2 =1. [5]