enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ars Conjectandi - Wikipedia

    en.wikipedia.org/wiki/Ars_Conjectandi

    The cover page of Ars Conjectandi. Ars Conjectandi (Latin for "The Art of Conjecturing") is a book on combinatorics and mathematical probability written by Jacob Bernoulli and published in 1713, eight years after his death, by his nephew, Niklaus Bernoulli.

  3. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.

  4. Jacob Bernoulli - Wikipedia

    en.wikipedia.org/wiki/Jacob_Bernoulli

    Jacob Bernoulli [a] (also known as James in English or Jacques in French; 6 January 1655 [O.S. 27 December 1654] – 16 August 1705) was one of the many prominent mathematicians in the Swiss Bernoulli family.

  5. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.

  6. Bernoulli family - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_family

    Jacob Bernoulli (1654–1705; also known as James or Jacques), mathematician after whom Bernoulli numbers are named, and author of the early probability text Ars Conjectandi; Nicolaus Bernoulli (1662–1716), painter and alderman of Basel; Johann Bernoulli (1667–1748; also known as Jean), mathematician and early adopter of infinitesimal calculus

  7. Urn problem - Wikipedia

    en.wikipedia.org/wiki/Urn_problem

    In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the probability of drawing one color or another ...

  8. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  9. Expected utility hypothesis - Wikipedia

    en.wikipedia.org/wiki/Expected_utility_hypothesis

    Nicolaus Bernoulli described the St. Petersburg paradox (involving infinite expected values) in 1713, prompting two Swiss mathematicians to develop expected utility theory as a solution. Bernoulli's paper was the first formalization of marginal utility, which has broad application in economics in addition to expected utility theory. He used ...