enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during

  3. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  4. Color difference - Wikipedia

    en.wikipedia.org/wiki/Color_difference

    As most definitions of color difference are distances within a color space, the standard means of determining distances is the Euclidean distance.If one presently has an RGB (red, green, blue) tuple and wishes to find the color difference, computationally one of the easiest is to consider R, G, B linear dimensions defining the color space.

  5. Gravity loss - Wikipedia

    en.wikipedia.org/wiki/Gravity_loss

    The actual acceleration of the craft is a-g and it is using delta-v at a rate of a per unit time. Over a time t the change in speed of the spacecraft is (a-g)t, whereas the delta-v expended is at. The gravity loss is the difference between these figures, which is gt. As a proportion of delta-v, the gravity loss is g/a.

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...

  8. Orders of magnitude (length) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(length)

    The Earth-Moon orbit, Saturn, OGLE-TR-122b, Jupiter, and other objects, to scale. Click on image for detailed view and links to other length scales. Scale model at megameters of the main Solar System bodies. To help compare different orders of magnitude, this section lists lengths starting at 10 8 meters (100 megameters or 100,000 kilometers or ...

  9. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...