Search results
Results from the WOW.Com Content Network
A metric tensor at p is a function g p (X p, Y p) which takes as inputs a pair of tangent vectors X p and Y p at p, and produces as an output a real number , so that the following conditions are satisfied:
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
Here is the inverse matrix to the metric tensor . In other words, = and thus = = = is the dimension of ... The covariant derivative of a function (scalar) ...
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.
In general relativity, the connection plays the role of the gravitational force field with the corresponding gravitational potential being the metric tensor. When the coordinate system and the metric tensor share some symmetry, many of the Γ i jk are zero. The Christoffel symbols are named for Elwin Bruno Christoffel (1829–1900). [7]
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...
Pages in category "Metric tensors" The following 16 pages are in this category, out of 16 total. This list may not reflect recent changes. * Metric tensor;
Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y. The set of bijective isometries from a metric space to itself forms a group with respect to function composition, called the isometry group. There is also the weaker notion of path isometry or arcwise isometry: