enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ATP hydrolysis - Wikipedia

    en.wikipedia.org/wiki/ATP_hydrolysis

    Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.

  3. ATPase - Wikipedia

    en.wikipedia.org/wiki/ATPase

    The coupling of ATP hydrolysis and transport is a chemical reaction in which a fixed number of solute molecules are transported for each ATP molecule hydrolyzed; for the Na + /K + exchanger, this is three Na + ions out of the cell and two K+ ions inside per ATP molecule hydrolyzed.

  4. Energy charge - Wikipedia

    en.wikipedia.org/wiki/Energy_charge

    The adenylate energy charge is an index used to measure the energy status of biological cells.. ATP or Mg-ATP is the principal molecule for storing and transferring energy in the cell : it is used for biosynthetic pathways, maintenance of transmembrane gradients, movement, cell division, etc...

  5. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    Steps 1 and 3 require the input of energy derived from the hydrolysis of ATP to ADP and P i (inorganic phosphate), whereas steps 7 and 10 require the input of ADP, each yielding ATP. [7] The enzymes necessary to break down glucose are found in the cytoplasm , the viscous fluid that fills living cells, where the glycolytic reactions take place.

  6. High-energy phosphate - Wikipedia

    en.wikipedia.org/wiki/High-energy_phosphate

    ATP is often called a high energy compound and its phosphoanhydride bonds are referred to as high-energy bonds. There is nothing special about the bonds themselves. They are high-energy bonds in the sense that free energy is released when they are hydrolyzed, for the reasons given above. Lipmann’s term "high-energy bond" and his symbol ~P ...

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  8. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...

  9. Hydrolysis - Wikipedia

    en.wikipedia.org/wiki/Hydrolysis

    The ATP molecule contains pyrophosphate linkages (bonds formed when two phosphate units are combined) that release energy when needed. ATP can undergo hydrolysis in two ways: Firstly, the removal of terminal phosphate to form adenosine diphosphate (ADP) and inorganic phosphate, with the reaction: