Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol: 2 HCrO 4 − + 3 RR'C(OH)H + 8 H + + 4 H 2 O → 2 [Cr(H 2 O) 6] 3+ + 3 RR'CO. For oxidation of primary alcohols to carboxylic acids, 4 equivalents of chromic acid oxidize 3 equivalents of the alcohol. The aldehyde is an ...
PCC is used as an oxidant.In particular, it has proven to be highly effective in oxidizing primary and secondary alcohols to aldehydes and ketones, respectively.The reagent is more selective than the related Jones' Reagent, so there is little chance of over-oxidation to form carboxylic acids if acidified potassium permanganate is used as long as water is not present in the reaction mixture.
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide.Some commonly industrially produced Koch acids include pivalic acid, 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [1]
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine.Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. [1]
In these oxidations, the Cr(VI) converts primary alcohols to the corresponding carboxylic acids and secondary alcohols to ketones. The reactions are shown below: Primary alcohols to carboxylic acids 4 CrO 3 + 3 RCH 2 OH + 12 H + → 3 RCOOH + 4 Cr 3+ + 9 H 2 O; Secondary alcohols to ketones 2 CrO 3 + 3 R 2 CHOH + 6 H + → 3 R 2 C=O + 2 Cr 3 ...