Search results
Results from the WOW.Com Content Network
In probability theory, conditional dependence is a relationship between two or more events that are dependent when a third event occurs. [1] [2] For example, ...
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. [1] This particular method relies on event A occurring with some sort of relationship with another event B.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
In probability, weak dependence of random variables is a generalization of independence that is weaker than the concept of a martingale [citation needed].A (time) sequence of random variables is weakly dependent if distinct portions of the sequence have a covariance that asymptotically decreases to 0 as the blocks are further separated in time.