enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...

  3. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  5. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    For a division ring D construct an (n + 1)-dimensional vector space over D (vector space dimension is the number of elements in a basis). Let P be the 1-dimensional (single generator) subspaces and L the 2-dimensional (two independent generators) subspaces (closed under vector addition) of this vector space. Incidence is containment.

  6. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    A subset of a vector space over an ordered field is a cone (or sometimes called a linear cone) if for each in and positive scalar in , the product is in . [2] Note that some authors define cone with the scalar ranging over all non-negative scalars (rather than all positive scalars, which does not include 0). [3]

  7. Barrelled space - Wikipedia

    en.wikipedia.org/wiki/Barrelled_space

    A convex and balanced subset of a real or complex vector space is called a disk and it is said to be disked, absolutely convex, or convex balanced.. A barrel or a barrelled set in a topological vector space (TVS) is a subset that is a closed absorbing disk; that is, a barrel is a convex, balanced, closed, and absorbing subset.

  8. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  9. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    In particular, a nonzero invariant vector (i.e. a fixed point of T) spans an invariant subspace of dimension 1. As a consequence of the fundamental theorem of algebra, every linear operator on a nonzero finite-dimensional complex vector space has an eigenvector. Therefore, every such linear operator in at least two dimensions has a proper non ...